林 涛,董 栅 ,秦冬阳,马同宽.基于支持向量回归的风电场短期功率预测[J].中南民族大学学报自然科学版,2017,(4):95-99
基于支持向量回归的风电场短期功率预测
Short-Term Forecast of Wind Farm Power Based on Support Vector Regression Model
  
DOI:
中文关键词: 短期预测  监控与数据采集系统  支持向量回归  风力发电机
英文关键词: wind power  short-term prediction  SCADA  support vector regression  wind turbine
基金项目:河北省科技支撑计划项目(17214304D)
作者单位
林 涛1,2,董 栅1,* ,秦冬阳1,马同宽1 1 河北工业大学 控制科学与工程学院天津 300130
2 河北工业大学 计算机科学与软件学院天津 300130 
摘要点击次数: 395
全文下载次数: 365
中文摘要:
      针对风电场的短期功率预测,提出了一种考虑风电机组运行条件的用于风电场短期功率预测的新方法.首先,利用风力发电机的监控和数据采集(SCADA) 系统数据计算输出功率和运行条件之间的皮尔逊相关系数, 验证了 SCADA 监测项目对风力发电机输出功率的具有相关性;其次,建立支持向量回归(SVR) 模型来预测单个风力 发电机的风力与气象、 运行状态的关系,发现了考虑运行条件的模型的预测结果优于仅考虑气象信息的模型的预测结果; 最后,考虑到不同空间位置的风力发电机组对风电场输出功率的贡献不同, 建立了各风力发电机预测功率和风电场预测功率输出之间的回归模型.试验结果表明: 所提出的风场回归模型的预测误差小于风力涡轮机所有 预测功率的模型的预测误差,从而验证了该方法的有效性.
英文摘要:
      Aiming at the short-term power forecasting of wind farm, the paper proposed a new method which takes the operating conditions of wind turbines into account. Firstly, according to the analysis of the Pearson correlation coefficient between the output power and operating conditions, the specific relevance between SCADA monitoring project and output wind of wind turbines can be revealed. Then a Support Vector Regression model was built to predict the relationship among the wind power of a single wind turbine, meteorological information and the operation state of the wind turbine. The prediction results of the model which considered the operating conditions are better than those of the model considered only meteorological information. Finally, considering the difference contribution of wind turbines which lies in the different spatial positions, the regression model of each wind power generation and the wind farm’ s output power were established.The prediction error of the wind field regression model proposed in this paper is less than all the predicted power models of the wind turbine, which verified the validity of the algorithm.
查看全文   查看/发表评论  下载PDF阅读器
关闭