谌先敢 ,刘海华 ,李亮,潘宁.基于多参数MRI的前列腺癌计算机辅助检测方法[J].中南民族大学学报自然科学版,2019,(3):466-471
基于多参数MRI的前列腺癌计算机辅助检测方法
Computer-aided detection of prostate cancer based on multiparametric MRI
  
DOI:10.12130/znmdzk.20190326
中文关键词: 计算机辅助检测  前列腺癌  多参数磁共振成像
英文关键词: computer-aided detection  prostate cancer  multiparametric MRI
基金项目:国家自然科学基金资助项目(81601461);湖北省自然科学基金资助项目(2017CFB552)
作者单位
谌先敢1,2 ,刘海华1,2 ,李亮3 ,潘宁1,2 1中南民族大学 生物医学工程学院, 武汉 4300742中南民族大学 医学信息分析及肿瘤诊疗湖北省重点实验室, 武汉 4300743武汉大学人民医院放射科, 武汉 430060 
摘要点击次数: 68
全文下载次数: 70
中文摘要:
      在前列腺癌的诊断过程中,候选病灶的检测是一项重要步骤,该步骤有时由医生手工完成,这会带来一些问题.为了实现候选病灶的自动检测,训练了一个分类模型用于自动检测候选病灶.获取候选病灶之后,病灶区域的各类特征被用来表征候选病灶,其中,纹理特征在诊断过程中已经被证实是有效的,为了进一步提升性能,仍然需要候选病灶的更高水平的特征.因此,设计了新特征来描述候选病灶:病灶-凸包比,为了证实该特征的有效性,设计了实验:在加入新特征之前和之后分别测试计算机辅助检测方法的性能.实验结果表明,所设计的新特征有助于提升该方法的性能.
英文摘要:
      In the diagnosis of prostate cancer, the detection of candidate lesions is an important step, which is sometimes delineated by experienced radiologist manually. This may bring observer variability. In order to achieve automatic detection of candidate lesions, a classification model for automatic detection of candidate lesions is trained. After obtaining the candidate lesion, various features of lesions are used to characterize the candidate lesion, in which texture feature has been proven to be effective in the diagnosis process. In order to further enhance the performance, the high-level description of tumor candidate lesions is still needed. Therefore,a new feature to describe these candidate lesions: the ratio of lesion and convex hull is designed. In order to confirm the effectiveness of the new feature, the experiments are designed: before and after adding new features, the performance of the system is tested. The experimental results show that the new features can improve the performance of the system.
查看全文   查看/发表评论  下载PDF阅读器
关闭