殷锋,周绍军,漆翔宇,曹旭.基于改进LOF算法的窃电检测方法研究[J].中南民族大学学报自然科学版,2022,41(5):579-585
基于改进LOF算法的窃电检测方法研究
Research on detection method of electricity stealing based on improved LOF algorithm
  
DOI:10.12130/znmdzk.20220511
中文关键词: 窃电检测  RBT-LOF算法  球树模型
英文关键词: electricity theft detection  RBT-LOF algorithm  ball tree model
基金项目:国家社会科学基金重大招标资助项目(19ZDA284);四川省科技资助项目(2020JDR0141, 2020JDRC0040);成都市哲学社会科学规划项目(2022BS027);中央高校基本科研业务费专项资金资助项目(2022SZL20)
作者单位
殷锋 西南民族大学 计算机科学与工程学院成都 610041 
周绍军 四川水利职业技术学院 信息工程系成都 611231 
漆翔宇 西南民族大学 计算机科学与工程学院成都 610041 
曹旭 西南民族大学 计算机科学与工程学院成都 610041 
摘要点击次数: 59
全文下载次数: 81
中文摘要:
      异常值检测作为数据挖掘领域研究的热点问题之一,广泛应用于窃电识别、反信息欺诈等领域. 而LOF算法作为一种依赖数据密度进行异常值识别的算法,因其具有检测精度高、应用场景多元等优势常被应用于窃电识别与检测过程中,但该算法往往存在较高的时间复杂度.针对该问题,提出了一种基于混合剪枝树模型改进的RBT-LOF算法,并在此基础上提出了相应的窃电用户识别模型. RBT-LOF算法首先对混合剪枝树的超平面划分方式进行调整,采用数据第一特征向量找出平衡分割位并重构数据对象;其次使用混合剪枝查询加速数据对象的搜索.实验结果表明:基于RBT-LOF的窃电识别模型较LOF算法、SVM、CNN和WDNet模型具有更高的执行效率和检测精确率.
英文摘要:
      Outlier detection, as one of the hot topics in data mining research, is widely used in the fields of electricity stealing identification, anti-information fraud and so on. The LOF algorithm, which is often used in the identification and detection of electricity theft due to its advantages of high detection accuracy and diverse application scenarios as an algorithm for outlier identification relying on data density. Aiming at this problem, an improved RBT-LOF algorithm based on the hybrid pruning tree model is proposed, and a corresponding electricity stealing user identification model is proposed on this basis. The RBT-LOF algorithm firstly adjusts the hyperplane division of the hybrid pruning tree, uses the first eigenvector of the data to find the balanced segmentation bit and reconstructs the data object; secondly, it uses the hybrid pruning query to speed up the search of the data object. The experimental results show that the power theft identification model based on RBT-LOF has higher execution efficiency and detection accuracy than the LOF algorithm, SVM, CNN and WDNet model.
查看全文   查看/发表评论  下载PDF阅读器
关闭